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Abstract
An Artificial Neural Network was trained to identify FCNC gu → tZ events
using data from a Monte Carlo simulation. This network was then used to
classify experimental data from the ATLAS detector, which was recorded
at a collision energy of

√
s = 13TeV and an integrated luminosity of

Lint = 140 fb−1. A 95% confidence upper limit on the cross section of the
tZ-production process was obtained:

σ95% = 40.93 fb
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1 Introduction
Particle physics (also known as high energy physics) is a field of physics study-
ing the fundamental particles that make up radiation and matter. The best
current understanding of particle physics is called the Standard Model (SM).
While the SMdescribes a lot of observable interactions very precisely, it still
fails to explain some observations. For this reason, new theoretical models
have been introduced, some of which predict Flavor Changing Neutral Cur-
rents (FCNC), which are highly suppressed in the SM. So far, the theoretical
suppression of FCNC is in high agreement with experimental observations.
Thus, a discovery of FCNC would greatly influence constraints on theoret-
ical model-building, which makes them an interesting research topic. This
research looks for a hypothesized FCNCprocess inwhich proton-proton col-
lision results in the production of a top quark and a Z-boson.

1.1 Particle physics

1.1.1 Particle accelerators and the LHC

The Large Hadron Collider (LHC) is the world s̓ largest particle accelerator,
with a circumference of 27 kilometers. It also holds the record for the high-
est collision energy, at 13TeV.[³] The LHC is mostly a ring of superconduct-
ing magnets, which have the purpose of keeping the particle beam cen-
tered in the ring. It also contains several accelerating structures, using elec-
tric fields to increase the energy of particles passing by. One type of col-
lision that has had ongoing measurements in the LHC is proton-proton-
collision (pp), with this researchs̓ process being a result of pp-collision at
13TeV. This collision energy, or invariant mass

√
s is defined (in natural

units) as
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1.1 Particle physics

√
s =

√√√√(∑
i

Ei

)2

−

(∑
i

p⃗i

)2

(1.1)

where Ei are the energies of the incoming particles, and p⃗i are their mo-
menta.

The LHC features multiple detectors, with the data used in this research be-
ing from the ATLAS detector. It encases the place of collision and is made
up of multiple detection elements. The first one is the Inner Detector, which
tracks the paths of charged particles in a magnetic field, giving valuable
information about particle charge, type and momentum. This is followed
by two calorimeters, with the purpose of measuring the particlesʼ ener-
gies through absorption in electromagnetic interactions. The Electromag-
netic Calorimeter absorbs electrons and photons, but hadrons and heavier
leptons pass through it. The hadrons are absorbed later in the Hadronic
Calorimeter, but muons still pass through. Their properties are finally mea-
sured with theMuon Spectrometer. Neutrinos are not detected due to the ex-
tremely low likelihood of interaction with detector elements. They are sim-
ply registered as a “missing” energy and momentum.

After interpreting the raw detector data, the particlesʼ types, energies and
momenta are obtained. The three-dimensional momentum vector is usu-
ally represented in a coordinate system using the pseudorapidity η, which
describes the angle of a particle s̓ momentum relative to the beam axis. Its
definition is

η = − ln

[
tan

(
θ

2

)]

where θ is the polar angle between the beam axis and the particle s̓ momen-
tum. The momentums̓ component that lies in the plane perpendicular to
the beam is represented in polar coordinates, where pT is the transverse mo-
mentum and ϕ is the polar angle in the transverse plane.
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1 Introduction

1.1.2 Detection of bottom- and top quarks

Quarks and gluons can not exist individually due to color confinement. In
the SM, they thus combine with quarks and antiquarks spontaneously cre-
ated from the vacuum and form hadrons. These hadrons are then detected
in the hadronic calorimeter as hadronic jets. Quarks can not be directlymea-
sured in the detector, but their existence can be inferred from these jets. b-
tagging is a method used to determine whether such a jet was caused by
the hadronization of a bottom quark. b-jets have several unique features
which can be measured in the detector, making it possible to identify bot-
tom quarks as the source of a jet:

• b-mesons generally have longer lifetimes than lighter mesons, due to
the small elements in the CKMmatrix Vub and Vcb. This longer lifetime
enables the b-meson to travel a measurable distance in the detector
before decaying into the lighter hadrons, creating a secondary vertex.
b-tagging algorithms can try to trace the jet back, and in case a sec-
ondary vertex is found, infer that the jet is a b-jet.

• The high mass of the b-quark may lead to larger transverse momenta
with respect to the jet axis of the decay products of a hadron contain-
ing a b-quark. This leads to a wider opening angle of the whole jet, so
this property can be used for tagging algorithms.

It should be noted that the same principle can be applied to charm quarks,
although the lower masses make it much less effective. Tagging algorithms
for up-, down- and strange quarks do not exist.

The top quark presents a very different situation. It is much heavier than
all other quarks, making it the only quark with a lifetime so short that it
decays before hadronizing. In all observations so far, the top quark decays
over weak interaction into a bottom quark, leaving behind a b-jet and the
W+-bosons̓ decay products.[⁹]
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Figure 1.1: Example Feynman diagrams for FCNC

1.1.3 The Standard Model and flavor changing neutral
currents

The Standard Model (SM) reflects the best current theoretical understand-
ing of particle physics. However, it fails to explain a number of phenom-
ena. Examples are gravity, dark matter and dark energy, matter-antimatter
asymmetry, and neutrino masses. These problems have motivated the de-
velopment of several theoretical models beyond the Standard Model (BSM).
A number of these models predict Flavor Changing Neutral Currents (FCNC).
These are hypothetical processes where the flavor of a fermion is changed
without affecting the electric charge. In the SM, they are forbidden on tree
level and highly suppressed on loop level by the GIM mechanism[¹⁰]. All
measurements so far have been in agreement with this. Fig. 1.1 shows an
example for a forbidden tree level FCNC process and an allowed, but sup-
pressed, loop level process. The suppression of FCNC is an important con-
straint inmodel building and a discovery would be a direct indicator of new
physics.

The current state of research by the LHC top-quark physics working group
on FCNC processes involving top quarks is summarized in Fig. 1.2. No dis-
covery has beenmade yet, so this plot summarizes the current upper limits
on the processesʼ branching fractions.
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Figure 1.2: Current upper limits on FCNC processes involving top quarks by
LHCtopWG[²]
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1.1 Particle physics

1.1.4 tZ-production

This research looks for tZ-production via FCNC. The two channels for this
signal process are shown in Fig. 1.3.

After the production, there are several possible decay modes for the Z bo-
son. The branching fractions of the most relevant decays are[⁹]

B(Z → hadrons) = (69.911± 0.056)%

B(Z → invisible) = (20.000± 0.055)%

B(Z → ℓℓ) = (10.099± 0.012)%

This research exclusively looks at events in which the Z boson decayed into
a lepton pair. Even though these make up the smallest branching fraction,
they provide more sensible data than hadronic and invisible decays. Invisi-
ble decays into neutrinos impose the obvious problem of the neutrinos be-
ing invisible to the detector, and hadronic jets impose several other prob-
lems such as flavor-tagging being impossible for light quarks. Another ap-
proach would be to look at Z → bb decays, which have a branching frac-
tion of (15.12 ± 0.05)% [⁹] and provide the benefit of being identifiable via
b-tagging.However, this approach has already been taken by a previous the-
sis.[¹¹]

q

g

t

Z

q

(a) s-channel

q

g

Z

t

t

(b) t-channel

Figure 1.3: Feynman diagrams of the studied tZ-production process

For the top quark, there is only one relevant decay mode, which is its weak
decay into a bottom quark. TheW-boson in this decaymay then decay into a
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1 Introduction

lepton-neutrino pair or into a quark pair. The resulting branching fractions
for the top quark s̓ decay modes are[⁹]

B(t → qqb) = (66.5± 1.4)%

B(t → bℓν) = (33.8± 1.1)%

This research only looks at events in which the top quark decays with t →
ℓν.

Additional jets to the b-jet may be observed, caused for example by random
gluon emissions. This research thus also takes into account events with an
additional second jet. The complete Feynman diagram for the s-channel of
the signal gu → tZ → bℓℓℓν is shown in Fig. 2.1. The branching fraction of
this decay can be calculated bymultiplying the relevant mentioned branch-
ing fractions:

B(tZ → bℓℓℓν) = B(Z → ℓℓ) · B(t → bℓν) (1.2)
= (3.41± 0.12)%

In theMonteCarlo simulation thatwasused to train thenetwork, the signal s̓
weightswere normalized so that the cross section of the entire process gu →
tZ is at an arbitrarily chosen 1 pb. Thismeans that these branching fractions
do not need to be considered when calculating the measured cross section
for the signal later.

1.2 Artificial neural networks

Artificial Neural Networks (ANN) are a machine learningmethod inspired by
the structure of biological neural networks. An ANN “learns” iteratively by
performing mathematical operations on the input data, using a kind of loss
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1.2 Artificial neural networks

function to assess how its output compares to the desired output, and apply-
ing a backpropagation algorithm to adjust its parameters, in hopes of a better
score on the loss function in the next iteration. Neural networks have been
used for decades in particle physics, mainly for the tasks of event classifi-
cation, function approximation and pattern recognition.[¹⁵] They have also
found usage in the search for FCNC processes.[⁵,⁴]

1.2.1 Basic function and structure

The fundamental parts of an ANN are the artificial neurons. These neurons
receive inputs xi that are multiplied with the weights wi and produce a sin-
gle output y. They also have an activation functionA : X → Y . The purpose
of this function is, most importantly, to introduce nonlinearities and, some-
times, to limit the possible outputs to the set Y (e.g. real numbers between
zero and one). Finally, a neuron may also have a bias b independent of the
inputs, in order to allow shifting of the activation function by a constant
value. For a neuron withN inputs, its output is given by

y = A

(
N∑
i=1

wixi + b

)
(1.3)

Aneural network consists ofmultiple layers of neurons. Each layermayhave
a different number of neurons. The outputs of the first layer s̓ neurons are
connected with the inputs of the second, and so on. In a fully connected
network, each output of layer l is connected to all inputs of layer l + 1. The
first layer s̓ inputs are the network s̓ inputs, hence it is called the input layer.
Conversely, the last layer s̓ outputs are the network s̓ outputs and it is called
the output layer. The layers in between the input- and the output layer are
called the hidden layers. Most problems only require one hidden layer, while
more complicated problems like image recognition may require multiple
hidden layers, which is called deep learning. While each neuron could have
a different activation function, one generally sticks to the same activation
function for all neurons, perhaps using a different function in the output
layer in order to limit the network s̓ possible outputs to a specific set. In
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1 Introduction

Figure 1.4: Example of a fully connected neural network with one hidden
layer, two input neurons, three neurons in the hidden layer, and
one output neuron

general, the output ylj of a neuron j in the layer l of a fully connected neural
network withNl neurons in the layer, with the bias blj of the neuron and the
single activation function A used for all neurons, is

ylj = A

(
Nl−1∑
i=1

wl
ijy

l−1
i + blj

)
=: A(zlj) (1.4)

where wl
ij are the weights of the connections between neurons yl−1

i and ylj.
An example of such a fully connected ANN can be seen in Fig. 1.4. The
learning process works by using a backpropagation algorithm to change the
weights wl

ij and the biases blj.

1.2.2 Training process

The training of a neural network works via gradient descent of a loss func-
tion Λ(y⃗L, o⃗), where L is the number of layers (so y⃗L is the network s̓ out-
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1.2 Artificial neural networks

put vector) and o⃗ are the expected outputs of the network. This method re-
quires knowledge of the expected outputs, which means each entry in the
input dataset needs to be labeled with a corresponding output vector. This
is called supervised learning. The loss function should be minimal for o⃗ = y⃗L

and increase with increased difference between the expected outputs and
the network s̓ actual outputs. Since the network s̓ outputs are entirely depen-
dent on its weights, biases and the inputs, the loss function can also be writ-
ten as Λ(x⃗, w, b, o⃗), where x⃗ is the input vector, w is the three-dimensional
weight matrix and b is the two-dimensional bias matrix. Then, the average
Λ(w, b)of the loss functionover all input vectors in the trainingdataset is cal-
culated. This average is independent of the individual input and output vec-
tors, and thus solely depends on theweights andbiases of thenetwork.

The idea of gradient descent is that the negative gradient of this function
provides the steepest descent to a localminimum. So theweights and biases
can be adjusted in each iteration like:

(wl
ij)

′ = wl
ij − α

∂Λ

∂wl
ij

(1.5)

(blj)
′ = blj − α

∂Λ

∂blj
(1.6)

whereα is the step size. Several different optimization algorithmshave been
created that adjust this step size in someway to help escape local minima in
hopes of finding the global minimum or at least a deeper local minimum.
The weights and biases are usually initialized randomly before the training
is started.

Now, the only task left is to determine the gradient. This iswherebackpropa-
gation comes into play.Mathematically, it is amethod that applies the chain
rule in order to calculate the derivatives of the loss function. For each input
vector, the gradient ∇(w,b)Λ is calculated. After this has been done for the
entire dataset, the average is calculated to obtain ∇Λ and Eq. (1.6) is ap-
plied to adjust the weights and biases. A period in which the network has
seen the entire training dataset is called an epoch. In practice, the gradient
descent is usually done in mini-batches from the training dataset, meaning
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1 Introduction

that there are many gradient descent iterations in one epoch. This means
that the calculated gradient is less accurate, but it is good enough to reach
the local minimum and this technique saves computational time.

Calculating the derivative for a weight connecting a neuron in the last hid-
den layer to another neuron in the output layer works as follows (using Eq.
(1.4)):

∂Λ

∂wL
ij

=
∂Λ

∂yLj
·
∂yLj
zLj

·
∂zLj
∂wL

ij

=
∂Λ

∂yLj
·
∂yLj
zLj

· yL−1
i (1.7)

The first and second term can be calculated analytically from the loss func-
tion and the activation function. The same canbedone for aweight connect-
ing a neuron in layer L− 2 to one in layer L− 1. This only introduces more
terms with the chain rule, taking one further back in the network, hence
the name backpropagation.

∂Λ

∂yL−1
j

=

NL∑
k=1

(
∂Λ

∂yLk
· ∂y

L
k

∂zLk
· ∂zLk
∂yL−1

j

)

=

NL∑
k=1

(
∂Λ

∂yLk
· ∂y

L
k

∂zLk
· wL

jk

)
(1.8)

∂Λ

∂wL−1
ij

=
∂Λ

∂yL−1
j

·
∂yL−1

j

∂zL−1
j

·
∂zL−1

j

∂wL−1
ij

=
∂Λ

∂yL−1
j

·
∂yL−1

j

∂zL−1
j

· yL−2
i (1.9)

This process can be repeated until the inputs of the network are reached.
Applying the same technique to the biases leads to the following equa-
tions:
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1.2 Artificial neural networks

∂Λ

∂bLj
=

∂Λ

∂yLj
·
∂yLj
∂zLj

(1.10)

∂Λ

∂bL−1
j

=
∂Λ

∂yL−1
j

·
∂yL−1

j

∂zL−1
j

(1.11)

0 20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

Figure 1.5: Visualization of overfitting, the dashed line marks when the val-
idation loss becomes minimal and training should be stopped.

1.2.3 Validation process and overfitting

Neural networks are prone to a problem called overfitting. This is when the
network starts to learn patterns specific to the training dataset that donʼt
generalizewell to data that hasnot beenused for training. It is similar tohow
a higher-order polynomial may fit to some random noise instead of fitting
the underlying function. Overfitting becomes especially problematic with
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1 Introduction

insufficient training data or an overly complicated network architecture,
for example unnecessarily many hidden neurons. Therefore, it is crucial
to have sufficient training data and to optimize the network s̓ architecture,
for example adding neurons until it begins to overfit.

In order to check that the network generalizes well, the input data should
be split into a training and a validation dataset. The latter is not used to
train the network, meaning it does not contribute to the loss functions̓ gra-
dient. Instead, the loss of the validation dataset is calculated after each gra-
dient descent iteration and can be compared to the training loss to assess
the amount of overfitting. This monitoring is especially useful to determine
when the optimal weights have been reached, which is when further train-
ing decreases the training loss but increases the validation loss. Fig. 1.5 visu-
alizes what overfitting may look like and marks what would be the optimal
point to stop training.

14



2 Construction and training of the
neural network

2.1 Input data

The data used for the training of the ANNwas created in aMonte Carlo sim-
ulation. It includes the signal process that this research is looking for and
a number of different background processes. There are 26,174 entries for
signal events and 192,422 entries for background events in the dataset. The
signal process is gu → tZ, and its Feynman diagram is shown in Fig. 2.1.
The background processes include:

• Standard model tZ-production: 71,175 entries

• Top pair production: 1,969 entries

• Top pair production in association with a boson (ttZ or ttW): 35,918
entries

• WZ-production: 43,269 entries

• ZZ-production: 35,411 entries

• Z+jets: 1,898 entries

• tWZ-production: 2,782 entries

As will be explained in the next section, only theWZ and the ZZ background
were used in the optimization process of the network s̓ structure. However,
all backgrounds were used to train the final network. The dataset consists
of weighted entries that provide values for:

• Lepton flavors and charges

15



2 Construction and training of the neural network

• The number of jets (1 or 2)

• Jet b-tagging scores

• Angle ϕ, transversemomentum pT , and pseudorapidity η, for all decay
products

• Masses for all decay products

u

b

ℓ+3

ν3ℓ+1

ℓ−2

u Z
t

W+

Figure 2.1: Feynman diagram of the FCNC signal process gu → tZ → bℓℓℓν

As can be seen in Fig. 2.1, the decay products are a lepton pair produced by
Z-boson decay in the signal, a lepton and a neutrino produced by W-boson
decay in the signal, and a jet produced by the bottom quark. Instead of us-
ing the pseudorapidities, polar angles and momenta of each lepton in the
pair resulting from Z-boson decay, their values can be used to calculate the
pseudorapidity ηZ, polar angle ϕZ and the transversemomentum pT,Z of the
Z boson:

pT,Z =
√

p2T,1 + p2T,2 + 2pT,1pT,2 cos (ϕ1 − ϕ2) (2.1)

ϕZ = arctan
pT,1 sinϕ1 + pT,2 sinϕ2

pT,1 cosϕ1 + pT,2 cosϕ2

(2.2)

ηZ = arcsinh
pT,1 sinh η1 + pT,2 sinh η2

pT,Z
(2.3)

Histograms of the variables in the dataset give an initial idea on which vari-
ablesmight be inconsequential to the training of a neural network, and con-
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2.1 Input data

versely, which might have a big impact. When the background and the sig-
nal show a strong separation in a histogram, this is a good indicator that the
variable should be included in the network inputs. However, missing sep-
aration does not mean that we can simply discard the variable, because a
neural network might detect patterns that are not obvious by simply look-
ing at the statistics of individual variables. Fig. 2.2 shows three examples
with different levels of separation.
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(a) Z boson transverse momentum,
showing strong separation.

2 1 0 1 2
3

0.0

0.1

0.2

0.3

0.4
Fr

eq
ue

nc
y

Background
Signal

(b) ℓ3 pseudorapidity, showing weak
separation.
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(c) ℓ3 polar angle, not showing separation.

Figure 2.2: Histograms from the dataset showing varying levels of separa-
tion between signal and background

The amount of separation between the signal and background distributions
can be described by the Earth Moverʼs Distance (EMD)metric. If U and V are
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2 Construction and training of the neural network

the cumulative distribution functions (CDFs) of distributions u and v, then
the EMD of u and v is given by[¹⁶]

EMD(u(x), v(x)) =

∫ +∞

−∞
|U(x)− V (x)|dx (2.4)

This means that the EMD between a signal and background distribution
can be computed using the empirical CDFs CS(x), CB(x) of signal and back-
ground, with x ∈ {x1, . . . , xN} and calculating:

EMD(S,B) =
N∑
i=1

|CS(xi)− CB(xi)| (2.5)

In order to ensure comparability of the resulting EMDs associated with dif-
ferent variables of the dataset, the data first needs to be standardized. For
each variable in the dataset, signal and background data are first combined
to calculate the total standard deviation. Then, this standard deviation is
used to standardize both the signal and the background by dividing all val-
ues with it. Finally, the EMD between standardized signal and background
is calculated. The result can be seen in Fig. 2.3.

2.2 Network inputs

In addition to the analysis that was done in the previous section, the choice
of network inputs will be aided by a different approach here: At first, a net-
work is trained with all 20 variables as inputs. This network has a single
hidden layer with 30 neurons. The inputs are standardized so that for each
input, its mean in the training dataset becomes zero and its standard de-
viation becomes one. The standardization constants are saved to make the
network usable on other datasets than the training dataset. The network is
then trained for 100 epochs. After training, its weights are analyzed in order
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2.2 Network inputs

10 3 10 2 10 1 100

EMD between standardized signal and background distributions
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J1
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b1

pT, J1

b2
jetbin

3 charge
pT, Z

Figure 2.3: Earth Mover s̓ Distance (EMD) between signal and background
for each variable in the dataset. A greater value means stronger
separation.

to gain an understanding of each input s̓ contribution to the network s̓ out-
put. It can then be concluded that the inputs that contribute more are more
important to the functioning of the network.

The weights are analyzed by taking the average of the absolute values of all
weights between each input and the hidden layer:

wi =
N∑
i=1

|wij| (2.6)

where wi is the average of input neuron i s̓ absolute weights, and wij is the
weight on the connection between input neuron i and neuron j in the hid-
den layer. The results can be seen in Fig. 2.4.
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2 Construction and training of the neural network
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Figure 2.4: Average of the absolute values of theweights between each input
variable and the hidden layer (30 neurons) after 100 epochs

This can be understood as a ranking of how important the input variables
are. The next step is to determine how many of these inputs can be left out
completelywithout affecting the performance of thenetwork. This has been
done by subsequently removing the input variable with the lowest rank-
ing, and evaluating the network s̓ performance on the validation dataset.
For each input vector, the network has been trained 10 times for 50 epochs,
with the division of the dataset into training and validation data being ran-
domized each time. The mean and standard error were calculated for these
measurements of the network s̓ accuracy on the validation data. The results
can be seen in Fig. 2.5.

It should be noted that, in this and all following network optimization sec-
tions, only the WZ and the ZZ background were used for both training and
validation, because datasets for the less important backgrounds were not
available at the time. Also, the datawas trimmed so that the number of back-
ground eventsmatch the number of signal events, which tries to ensure that
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2.3 Network structure

the training does not get stuck in a local minimum by classifying all events
as background. Since the network is trained a lot of times, this type of analy-
sis is also very computationally expensive, so a smaller dataset is preferable
to ensure sane execution times.
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Figure 2.5: Network s̓ performance after 50 epochs on the validationdataset,
depending on the number of input neurons

The best accuracy is reached when taking the 9 highest-scoring variables
from Fig. 2.4. Further inputs do not improve network performance, and
consequently are not used.

2.3 Network structure

2.3.1 Number of hidden neurons

Using the optimal inputs determined in the previous section, a similar pro-
cess was done to obtain the optimal number of neurons in one hidden layer.
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2 Construction and training of the neural network

Neurons were added one after another, and the network was again trained
10 times for 50 epochs in each step. The results are shown in Fig. 2.6 and
display the selected optimal value of 29 neurons in the hidden layer.
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Figure 2.6: Network s̓ performance on the validation dataset after 50 train-
ing epochs, depending on the number of neurons in its single
hidden layer, with the selected optimal value of 29 neurons high-
lighted in orange

The value was selected by fitting with a custom fit function. There are two
main effects that can be observed when adding neurons: At first, the accu-
racy of the network on the validation data increases dramatically with each
added neuron. However, this increase in accuracy becomes less until the
maximumpossible accuracy on the validation dataset is reached. After that,
further neurons decrease the performance of the network on the validation
data, while the performance on the training data still increases. This is due
to overfitting, where the network begins to learn small patterns in the train-
ing dataset that do not generalize well and lead to a worse performance on
the validation data. The initial effect of performance increase appears pro-
portional to the negative of an exponential decay. The effect of overfitting
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2.3 Network structure

Table 2.1: Results of the fit shown in Fig. 2.6, Eq. (2.7)
Fit parameter value± standard deviation
a 0.8172± 0.0008
b (3.8± 1.3) · 10−5

c (49± 6) · 10−3

d 0.186± 0.023

seems to be linear. Combining these two effects leads to the following ex-
pression, which was used for fitting:

A(N) = a− b ·N − c · e−d·N (2.7)

Here,A is the accuracy on the validation dataset,N is the number of hidden
neurons, and a, b, c, d are fit parameters. a is mostly related to themaximum
network accuracy, b is related to the severity of overfittingwhen adding neu-
rons, c is related to how much of a benefit is gained by adding neurons in
the beginning, and d is related to how long one can add neurons before the
effect of overfitting starts to take over. The results of the fit can be seen in
Tab. 2.1

The position of the maximum can be determined analytically from the fit
parameters by setting the derivative of Eq. (2.7) to zero:

Nmax = −1

d
ln

(
b

cd

)
(2.8)

= 29± 2

2.3.2 Number of hidden layers

It was also determined whether increasing the number of hidden layers
benefited network accuracy. This was done by subsequently adding fully
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2 Construction and training of the neural network

connected layers with 29 neurons in each layer and repeating the process
of training 10 times for 50 epochs, like in the previous sections. As can
be seen in Fig. 2.7, additional hidden layers do not increase the network s̓
performance. This problem does thus not benefit from a deep learning ap-
proach.
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Figure 2.7: Network s̓ performance on the validation dataset after 50 train-
ing epochs, depending on the number of hidden layers with 29
neurons each

2.3.3 Choice of activation functions

Finally, the optimal choice of activation functions in the hidden layers was
determined. For the output layer, the sigmoid function was used as the ac-
tivation, to ensure an output between zero and one. For the hidden layers,
several activation functions have been tested. The best result was obtained
with the Softmax function, as can be seen in Fig. 2.8.
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Figure 2.8: Network s̓ performance on the validation dataset after 50 train-
ing epochs, for several different activation functions applied af-
ter the input- and the hidden layer

2.4 Training process

From the calculations done in the previous sections, the following network
structure was chosen:

• Input neurons: 9

• Hidden neurons: 29

• Output neurons: 1

• Activation function: Softmax after hidden neurons, Sigmoid after out-
put neuron

Now, this network is finally trained and validated using the entire dataset,
including all background processes. The dataset was split into a training set
and a validation set, in a 70:30 ratio. This finally results in a training dataset
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2 Construction and training of the neural network

with 153,017 entries and a validation dataset with 65,579 entries. In order
to ensure that the network does not overfit on the background processes,
the weights were adjusted so that the sum of all weights for background and
signal were equal.

Binary cross-entropy was chosen as the loss function. The cross-entropy of
two distributions f(x) and g(x) with x ∈ X is given by:

L(f, g) = −
∑
x∈X

f(x) log g(x) (2.9)

In our case of a classificationnetwork,X = {0, 1},wherebackgroundevents
are labeled with a 0, and signal events are labeled with a 1. For a specific
event in the dataset with the label e ∈ X, fe(x) then simply becomes one
for x = e and zero for x ̸= e. ge(x) is the network s̓ prediction of e being x.
The network s̓ output o is interpreted as a likelihood of the event in question
being a signal event. Consequently, 1− o is the likelihood of the event being
a background event. This leads to the following expressions for fe(x) and
ge(x):

fe(x) =

{
1 x = e

0 x ̸= e
=

{
e x = 1

1− e x = 0
(2.10)

ge(x) =

{
o x = 1

1− o x = 0
(2.11)

Finally, the expression for binary cross-entropy is obtained:

L(e, o) = −(e · log o+ (1− e) · log(1− o)) (2.12)

It is important to note that the loss function was weighted according to the
weights in the dataset stemming from the Monte Carlo simulation, which
takes the cross sections of the individual background process into account.
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Figure 2.9: Maximumaccuracyon the validationdata andnumberof epochs
required to obtain it for different optimizers,when the training is
stopped after 50 epochs without improvement of the validation
accuracy. Displayed are themeans and standard deviations of 10
training runs

One epoch describes a period of time over which the network has seen all
entries in the training dataset. After an epoch is complete, the weighted av-
erage over all the losses in that epoch is calculated to determine the epochs̓
loss. The validation loss is also weighted, however, it is calculated only after
the epoch is finished. This explains why, in Fig. 2.12b, the validation loss is
initially lower than the training loss, when it is expected to be greater than
or equal to the training loss because of overfitting.

Besides the loss function, there is another important metric to assess the
network s̓ performance, which is the accuracy. It is calculated by labeling all
outputs greater than 0.5 as signal events, and all less than or equal to 0.5 as
background. Then, the percentage of correct classifications is determined.
The loss function is important for training, while the accuracy is more im-
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2 Construction and training of the neural network

portant to assess the network s̓ performance, since the accuracy is calcu-
lated in the way the network is intended to be used after training. Accuracy
and binary cross-entropy are not closely related, because cross-entropy can
provide any real number between zero and one for a single event, while
the accuracy of a single event is either exactly zero or exactly one. While
the network is trained, its accuracy on the validation dataset is monitored.
When this accuracy has not improved for 50 epochs, the training is stopped,
and the network weights that resulted in the best validation accuracy are
restored. The accuracy was chosen as the metric for this early stopping, in-
stead of the loss, because of the aforementioned reasons.

The optimizer was chosen by training the network like this with different
optimizers for 10 times each, observing the maximum accuracy and the
number of epochs until it was reached. Then, the mean and standard de-
viation of this maximum accuracy and the number of epochs were calcu-
lated, and they were plotted against each other, as can be seen in Fig. 2.9.
Obviously, a higher accuracy and a smaller number of epochs required
to obtain it are desirable. The optimizers tested were rmsprop[¹²], Ada-
Grad[⁷], ADADELTA[¹⁷], Adam[¹⁴], AdaMax[¹³] and Nadam[⁶]. It can be seen
that ADADELTA provides the best results, so it was chosen as the opti-
mizer.

2.5 Results

The network was trained using the structure and the training process de-
scribed in the previous section. Themaximum accuracy a on the validation
data and the number of epochs nopt that were needed to obtain it are:

a = 83.81%

nopt = 8

The network s̓ performance can be assessed better than simply using the
accuracy, using the Receiver Operator Characteristic (ROC) curve. To obtain
it, the classification threshold is varied from zero to one. The classification
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Figure 2.10: Signal efficiency and background rejection

threshold is the threshold abovewhich thenetwork s̓ output is intrepreted as
a signal classification.While varying this threshold, the background rejection
and signal efficiency can be recorded, as seen in Fig. 2.10a. The background
rejection is the weighted fraction of background events that were correctly
classified. Its ideal value is one, and as it decreases, the number of false
positives increases. The signal efficiency is the weighted fraction of signal
events that were correctly classified. As it decreases, the number of false
negatives increases. When these two values are plotted against each other,
the ROC is obtained, shown in Fig. 2.10b.

It is evident that the network has learned to classify the events. However, in
Fig. 2.10a, it canbeobserved that thenetworkdoesnot use the full classifica-
tion range fromzero to one, but staysmostlywithin outputs between 0.4 and
0.8. This is a result of the few number of training epochs until the optimal
accuracy was reached. As seen in Fig. 2.12, the accuracy is at its maximum
when the loss is still relatively high. Continuing training decreases the loss,
but also decreases the accuracy, which is themore importantmetric to eval-
uate the performance of the network. A test run with 2,000 training epochs
confirmed that the accuracy will not start increasing again after such an
amount of training time, so the choice of stopping training after just eight
epochs is reasonable.
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Figure 2.11: Background rejections for the different background processes
in the validation dataset

It is also possible to record the background rejections for the individual
background processes. As can be seen in Fig. 2.11, the network is best at
rejecting Z+jets events and worst at rejecting tWZ-production events.

The loss and accuracy of training and validation datasets plotted over
epochs can be seen in Fig. 2.12.
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Figure 2.12: Training progress
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3 Evaluation of experimental data

3.1 Dataset

The experimental data was obtained fromATLASmeasurements during the
years 2015–2018, at an invariant mass of

√
s = 13TeV and an integrated

luminosity of Lint = 140 fb−1. It contains a total of 746 preselected detector
events. The preselection criteria are:

• There are exactly three charged leptons (electrons or muons) with
transverse momenta of at least 15GeV and pseudorapidities |η| < 2.5

• One of the leptons has a transverse momentum of at least 27GeV and
has triggered the ATLAS detector

• Another one of the leptons has a transverse momentum of at least
25GeV

• There are two candidates for decay products of the Z boson, mean-
ing two charged leptons of the same flavor with opposite charges. The
invariant mass of this lepton pair is 81.2GeV <

√
s < 101.2GeV. If

there aremultiple candidates, the pair with the invariant mass closest
to 91.2GeV is labeled as coming from Z decay.

• There are one or two jets with transverse momenta of at least 30GeV
and a pseudorapidity |η| < 4.5.

• One jet has a b-tagging score of at least 4 (corresponding to 70% of
b-jets being tagged with such a score)

Theweights in the simulated data,whichhas been introduced in Section 2.1,
take into account the cross section of the various background processes and
the integrated luminosity of the experiment. For the signal, an arbitrary
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3.2 Optimization of signal and background statistics

cross section of 1 pbwas chosen in the simulation. Thismeans that the num-
ber of detected events can be directly compared between the experimental
dataset and the full simulated dataset, without needing to adjust weights to
match the integrated luminosity. As seen in Fig. 2.12a, the accuracies ob-
tained for the validation and the training dataset are not different, so it is
possible to merge them back together and evaluate the network s̓ response
on the entire dataset. The sum of the background weights in the simulated
data is 733.45, which is slightly less than the counts obtained in the experi-
ment. In the following sections, the network s̓ response will be used to cut
both datasets further, in a way that maximizes signal significance, and the
counts will be compared.

3.2 Optimization of signal and background
statistics

In order to achieve a cut with high signal significance, the classification
threshold of the network is optimized as to maximize a Figure of Merit
(FOM). A commonly used FOM for discoveries is

FOM =
S√
B

(3.1)

where S is the number of signal events andB is the number of background
events. While varying the classification threshold, the sum of the weights
of background and signal events that were classified as signal events is kept
track of. These are theB and S of Eq. 3.1. Then, the classification threshold
that maximizes this FOM is chosen. Fig. 3.1 shows this relation of the FOM
to the classification threshold.

The classification threshold tmax that maximizes this FOM, the sum of the
wrongly classified background eventsʼ weights B, and that of the correctly
classified signal eventsʼ weights S, when using this threshold tmax for classi-
fication, are:
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tmax = 0.61

B = 26.14

S = 71.34

S√
B

= 13.95

When applying the same cut to the experimental data, B is the expected
number of background events. The S obtained here assumes the cross sec-
tion that was arbitrarily chosen in the simulation as 1 pb, and thus does not
correspond to an expected number of signal events. The resulting signal
efficiency ϵS and background rejection ρB are

ϵS = 39.2%

ρB = 96.4%
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3.3 Calculating the cross section

3.3 Calculating the cross section

Using the optimal classification threshold tmax = 0.61 determined in the
previous section, the number of eventsN in the experimental data thatwere
classified as signal events is:

N = 20

Since this is less than the number of expected background eventsB = 26.14,
nodiscoverywasmade and the experimental data supports thebackground-
only hypothesis. In this section, an upper limit on the signal s̓ cross section
is calculated. The counts follow Poissonian statistics, so the likelihood of
observing a number of countsN , with the expected number of counts being
λ, is:

Pλ(N) = e−λλ
N

N !
(3.2)

For the 95% confidence upper limit on the number of expected counts λ95%,
given themeasured countsN , the combined likelihoodof counting less than
or equal toN events needs to be:

Pλ95%
(n ≤ N) =

N∑
n=0

Pλ95%
(N) = 0.05 (3.3)

The value for λ95%, givenN = 20, was calculated numerically as:

λ95% = 29.06

Finally, using the arbitrary signal cross section σS = 1pb from the simula-
tion, the number of expected signal events S given that cross section and
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3 Evaluation of experimental data

the number of expected background events B, the upper limit on the sig-
nal s̓ cross section σ95% can be calculated:

σ95% =
λ95% −B

S
σS = 40.93 fb (3.4)
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Figure 3.2: Histograms of the network response on the various simulated
backgrounds, the simulated signal and the experimental data

Fig. 3.2 shows the histograms of the network s̓ responses on the simulated
background, on the simulated signal with an arbitrarily chosen cross sec-
tion of 1 pb and on the experimental data. It can be seen that the data sup-
ports the background-only hypothesis.
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4 Conclusion
A neural network has been trained to identify tZ-production events via
FCNC. It has then been used to identify such events in experimental data,
and an upper limit on the cross section has been calculated. The results are
shown in Tab. 4.1

Table 4.1: Summarized results of this research
Quantity Value
Signal efficiency ϵS 39.2%
Background rejection ρB 96.4%
Number of training epochs nepochs 8
95% UL on signal cross section σ95% 40.93 fb

The signal efficiency that maximizes the network s̓ signal significance is
quite low. Also, the number of training epochs until optimal accuracy has
been achieved is low, because while the loss of binary cross-entropy would
continue decreasing with further training, the accuracy would decrease,
too. Usage of a loss function that directly takes into account signal signif-
icance could lead to better results, as one could optimize purely using the
loss. Sucha loss functionhas alreadybeenproposedbyprevious research.[⁸]
Optimization using the accuracy generally makes sense for classification
networks, butmay lead to problems here since the network is clearly unable
to identify a large portion of signal events that seem to be indistinguishable
to the background. Thismeans that the neural network could be learning to
give an output closer to zero for background events, which may in turn also
give some signal events lower scores, decreasing network accuracy while
also decreasing the binary cross-entropy loss.

Such improvements might improve the obtained upper limit on the cross
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4 Conclusion

section. However, the biggest limiting factor is the amount of available data.
More datawould significantly improve the upper limits on the cross section.
The amount of available data ismostly limited on current experimental con-
straints, for example the luminosity of the LHC, which is already planned to
be upgradedwith theHigh-Luminosity LHCproject, with plans of becoming
operational by 2026.[¹]
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